Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
PLOS global public health ; 2(11), 2022.
Article in English | EuropePMC | ID: covidwho-2248810

ABSTRACT

We conducted an observational retrospective study on patients hospitalized with COVID-19, during March 05, 2020, to October 28, 2021, and developed an agent-based model to evaluate effectiveness of recommended healthcare resources (hospital beds and ventilators) management strategies during the COVID-19 pandemic in Gauteng, South Africa. We measured the effectiveness of these strategies by calculating the number of deaths prevented by implementing them. We observed differ ences between the epidemic waves. The length of hospital stay (LOS) during the third wave was lower than the first two waves. The median of the LOS was 6.73 days, 6.63 days and 6.78 days for the first, second and third wave, respectively. A combination of public and private sector provided hospital care to COVID-19 patients requiring ward and Intensive Care Units (ICU) beds. The private sector provided 88.4% of High care (HC)/ICU beds and 49.4% of ward beds, 73.9% and 51.4%, 71.8% and 58.3% during the first, second and third wave, respectively. Our simulation results showed that with a high maximum capacity, i.e., 10,000 general and isolation ward beds, 4,000 high care and ICU beds and 1,200 ventilators, increasing the resource capacity allocated to COVID- 19 patients by 25% was enough to maintain bed availability throughout the epidemic waves. With a medium resource capacity (8,500 general and isolation ward beds, 3,000 high care and ICU beds and 1,000 ventilators) a combination of resource management strategies and their timing and criteria were very effective in maintaining bed availability and therefore preventing excess deaths. With a low number of maximum available resources (7,000 general and isolation ward beds, 2,000 high care and ICU beds and 800 ventilators) and a severe epidemic wave, these strategies were effective in maintaining the bed availability and minimizing the number of excess deaths throughout the epidemic wave.

2.
Front Artif Intell ; 5: 1013010, 2022.
Article in English | MEDLINE | ID: covidwho-2233075

ABSTRACT

The outbreak of coronavirus in the year 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) prompted widespread illness, death, and extended economic devastation worldwide. In response, numerous countries, including Botswana and South Africa, instituted various clinical public health (CPH) strategies to mitigate and control the disease. However, the emergence of variants of concern (VOC), vaccine hesitancy, morbidity, inadequate and inequitable vaccine supply, and ineffective vaccine roll-out strategies caused continuous disruption of essential services. Based on Botswana and South Africa hospitalization and mortality data, we studied the impact of age and gender on disease severity. Comparative analysis was performed between the two countries to establish a vaccination strategy that could complement the existing CPH strategies. To optimize the vaccination roll-out strategy, artificial intelligence was used to identify the population groups in need of insufficient vaccines. We found that COVID-19 was associated with several comorbidities. However, hypertension and diabetes were more severe and common in both countries. The elderly population aged ≥60 years had 70% of major COVID-19 comorbidities; thus, they should be prioritized for vaccination. Moreover, we found that the Botswana and South Africa populations had similar COVID-19 mortality rates. Hence, our findings should be extended to the rest of Southern African countries since the population in this region have similar demographic and disease characteristics.

3.
PLOS Glob Public Health ; 2(11): e0001113, 2022.
Article in English | MEDLINE | ID: covidwho-2196829

ABSTRACT

We conducted an observational retrospective study on patients hospitalized with COVID-19, during March 05, 2020, to October 28, 2021, and developed an agent-based model to evaluate effectiveness of recommended healthcare resources (hospital beds and ventilators) management strategies during the COVID-19 pandemic in Gauteng, South Africa. We measured the effectiveness of these strategies by calculating the number of deaths prevented by implementing them. We observed differ ences between the epidemic waves. The length of hospital stay (LOS) during the third wave was lower than the first two waves. The median of the LOS was 6.73 days, 6.63 days and 6.78 days for the first, second and third wave, respectively. A combination of public and private sector provided hospital care to COVID-19 patients requiring ward and Intensive Care Units (ICU) beds. The private sector provided 88.4% of High care (HC)/ICU beds and 49.4% of ward beds, 73.9% and 51.4%, 71.8% and 58.3% during the first, second and third wave, respectively. Our simulation results showed that with a high maximum capacity, i.e., 10,000 general and isolation ward beds, 4,000 high care and ICU beds and 1,200 ventilators, increasing the resource capacity allocated to COVID- 19 patients by 25% was enough to maintain bed availability throughout the epidemic waves. With a medium resource capacity (8,500 general and isolation ward beds, 3,000 high care and ICU beds and 1,000 ventilators) a combination of resource management strategies and their timing and criteria were very effective in maintaining bed availability and therefore preventing excess deaths. With a low number of maximum available resources (7,000 general and isolation ward beds, 2,000 high care and ICU beds and 800 ventilators) and a severe epidemic wave, these strategies were effective in maintaining the bed availability and minimizing the number of excess deaths throughout the epidemic wave.

4.
Frontiers in artificial intelligence ; 5, 2022.
Article in English | EuropePMC | ID: covidwho-2092728

ABSTRACT

The outbreak of coronavirus in the year 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) prompted widespread illness, death, and extended economic devastation worldwide. In response, numerous countries, including Botswana and South Africa, instituted various clinical public health (CPH) strategies to mitigate and control the disease. However, the emergence of variants of concern (VOC), vaccine hesitancy, morbidity, inadequate and inequitable vaccine supply, and ineffective vaccine roll-out strategies caused continuous disruption of essential services. Based on Botswana and South Africa hospitalization and mortality data, we studied the impact of age and gender on disease severity. Comparative analysis was performed between the two countries to establish a vaccination strategy that could complement the existing CPH strategies. To optimize the vaccination roll-out strategy, artificial intelligence was used to identify the population groups in need of insufficient vaccines. We found that COVID-19 was associated with several comorbidities. However, hypertension and diabetes were more severe and common in both countries. The elderly population aged ≥60 years had 70% of major COVID-19 comorbidities;thus, they should be prioritized for vaccination. Moreover, we found that the Botswana and South Africa populations had similar COVID-19 mortality rates. Hence, our findings should be extended to the rest of Southern African countries since the population in this region have similar demographic and disease characteristics.

5.
BMJ Glob Health ; 7(6)2022 06.
Article in English | MEDLINE | ID: covidwho-1909740

ABSTRACT

The COVID-19 pandemic has underlined the need to partner with the community in pandemic preparedness and response in order to enable trust-building among stakeholders, which is key in pandemic management. Citizen science, defined here as a practice of public participation and collaboration in all aspects of scientific research to increase knowledge and build trust with governments and researchers, is a crucial approach to promoting community engagement. By harnessing the potential of digitally enabled citizen science, one could translate data into accessible, comprehensible and actionable outputs at the population level. The application of citizen science in health has grown over the years, but most of these approaches remain at the level of participatory data collection. This narrative review examines citizen science approaches in participatory data generation, modelling and visualisation, and calls for truly participatory and co-creation approaches across all domains of pandemic preparedness and response. Further research is needed to identify approaches that optimally generate short-term and long-term value for communities participating in population health. Feasible, sustainable and contextualised citizen science approaches that meaningfully engage affected communities for the long-term will need to be inclusive of all populations and their cultures, comprehensive of all domains, digitally enabled and viewed as a key component to allow trust-building among the stakeholders. The impact of COVID-19 on people's lives has created an opportune time to advance people's agency in science, particularly in pandemic preparedness and response.


Subject(s)
COVID-19 , Citizen Science , Community Participation , Data Collection , Humans , Pandemics
6.
Int J Environ Res Public Health ; 18(15)2021 07 26.
Article in English | MEDLINE | ID: covidwho-1325673

ABSTRACT

COVID-19 is imposing massive health, social and economic costs. While many developed countries have started vaccinating, most African nations are waiting for vaccine stocks to be allocated and are using clinical public health (CPH) strategies to control the pandemic. The emergence of variants of concern (VOC), unequal access to the vaccine supply and locally specific logistical and vaccine delivery parameters, add complexity to national CPH strategies and amplify the urgent need for effective CPH policies. Big data and artificial intelligence machine learning techniques and collaborations can be instrumental in an accurate, timely, locally nuanced analysis of multiple data sources to inform CPH decision-making, vaccination strategies and their staged roll-out. The Africa-Canada Artificial Intelligence and Data Innovation Consortium (ACADIC) has been established to develop and employ machine learning techniques to design CPH strategies in Africa, which requires ongoing collaboration, testing and development to maximize the equity and effectiveness of COVID-19-related CPH interventions.


Subject(s)
Big Data , COVID-19 , Artificial Intelligence , Humans , Public Health , SARS-CoV-2 , Vaccination
7.
Int J Environ Res Public Health ; 18(14)2021 07 09.
Article in English | MEDLINE | ID: covidwho-1308340

ABSTRACT

The impact of the still ongoing "Coronavirus Disease 2019" (COVID-19) pandemic has been and is still vast, affecting not only global human health and stretching healthcare facilities, but also profoundly disrupting societal and economic systems worldwide. The nature of the way the virus spreads causes cases to come in further recurring waves. This is due a complex array of biological, societal and environmental factors, including the novel nature of the emerging pathogen. Other parameters explaining the epidemic trend consisting of recurring waves are logistic-organizational challenges in the implementation of the vaccine roll-out, scarcity of doses and human resources, seasonality, meteorological drivers, and community heterogeneity, as well as cycles of strengthening and easing/lifting of the mitigation interventions. Therefore, it is crucial to be able to have an early alert system to identify when another wave of cases is about to occur. The availability of a variety of newly developed indicators allows for the exploration of multi-feature prediction models for case data. Ten indicators were selected as features for our prediction model. The model chosen is a Recurrent Neural Network with Long Short-Term Memory. This paper documents the development of an early alert/detection system that functions by predicting future daily confirmed cases based on a series of features that include mobility and stringency indices, and epidemiological parameters. The model is trained on the intermittent period in between the first and the second wave, in all of the South African provinces.


Subject(s)
COVID-19 , Humans , Memory, Short-Term , Neural Networks, Computer , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL